Search results for " K-Means"

showing 10 items of 14 documents

Exploratory approach for network behavior clustering in LoRaWAN

2021

AbstractThe interest in the Internet of Things (IoT) is increasing both as for research and market perspectives. Worldwide, we are witnessing the deployment of several IoT networks for different applications, spanning from home automation to smart cities. The majority of these IoT deployments were quickly set up with the aim of providing connectivity without deeply engineering the infrastructure to optimize the network efficiency and scalability. The interest is now moving towards the analysis of the behavior of such systems in order to characterize and improve their functionality. In these IoT systems, many data related to device and human interactions are stored in databases, as well as I…

IoTGeneral Computer ScienceComputer sciencek-meansReliability (computer networking)02 engineering and technologyLoRaMachine LearningHome automation0202 electrical engineering electronic engineering information engineeringCluster AnalysisWirelessCluster analysisIoT LoRa LoRaWAN Machine Learning k-means Anomaly Detection Cluster AnalysisNetwork packetbusiness.industry020206 networking & telecommunicationsIoT; LoRa; LoRaWAN; Machine Learning; k-means; Anomaly Detection; Cluster AnalysisLoRaWANWireless network interface controllerScalabilityAnomaly Detection020201 artificial intelligence & image processingAnomaly detectionbusinessComputer networkJournal of Ambient Intelligence and Humanized Computing
researchProduct

Hierarchical and non-hierarchical clustering methods to study students algebraic thinking in solving an open-ended questionnaire

2017

The problem of taking a data set and separating it into subgroups, where the members of each subgroup are more similar to each other than they are to members outside the subgroup, has been extensively studied in science and mathematics education research. Student responses to written questions and multiple-choice tests have been characterised and studied using several qualitative and/or quantitative analysis methods. However, there are inherent difficulties in the categorisation of student responses in the case of open-ended questionnaires. Very often, researcher bias means that the categories picked out tend to find the groups of students that the researcher is seeking out. In our contribu…

Settore FIS/08 - Didattica E Storia Della Fisicak-means methodAlgebraic thinking Clustering k-means method dendrogramsAlgebraic thinking[MATH] Mathematics [math][SHS] Humanities and Social SciencesSettore MAT/04 - Matematiche Complementari[MATH]Mathematics [math]dendrogramsComputingMilieux_MISCELLANEOUS[SHS]Humanities and Social Sciencesclustering
researchProduct

Unsupervised change detection with kernels

2012

In this paper an unsupervised approach to change detection relying on kernels is introduced. Kernel based clustering is used to partition a selected subset of pixels representing both changed and unchanged areas. Once the optimal clustering is obtained the estimated representatives (centroids) of each group are used to assign the class membership to all others pixels composing the multitemporal scenes. Different approaches of considering the multitemporal information are considered with accent on the computation of the difference image directly in the feature spaces. For this purpose a difference kernel approach is successfully adopted. Finally an effective way to cope with the estimation o…

Correctness010504 meteorology & atmospheric sciencesFeature extraction0211 other engineering and technologiesComposite kernels02 engineering and technologykernel parameters01 natural sciencesunsupervised change detectionElectrical and Electronic Engineeringkernel k-meansCluster analysis021101 geological & geomatics engineering0105 earth and related environmental sciencesMathematicsPixelbusiness.industryPattern recognitionGeotechnical Engineering and Engineering GeologyNonlinear systemKernel (image processing)Unsupervised learningArtificial intelligencebusinessChange detectionIEEE Geoscience and Remote Sensing Letters
researchProduct

K-means Clustering to Study How Student Reasoning Lines Can Be Modified by a Learning Activity Based on Feynman’s Unifying Approach

2017

Background:Research in Science Education has shown that often students need to learn how to identify differences and similarities between descriptive and explicative models. The development and use of explicative skills in the field of thermal science has always been a difficult objective to reach. A way to develop analogical reasoning is to use in Science Education unifying conceptual frameworks.Material and methods:A questionnaire containing six open-ended questions on thermally activated phenomena was administered to the students before instruction. A second one, similar but focused on different physical content was administered after instruction. Responses were analysed using k-means Cl…

Analogical reasoningScience instructionMechanism (biology)Computer scienceLogical reasoningBoltzmann Factor evaluation quantitative data analysis in education k-means clustering thermally-activated phenomenaSettore FIS/08 - Didattica E Storia Della FisicaApplied Mathematics05 social sciencesk-means clustering050301 educationScience educationField (computer science)Educationsymbols.namesake0502 economics and businesssymbolsMathematics educationFeynman diagram0503 education050203 business & managementEURASIA Journal of Mathematics, Science and Technology Education
researchProduct

Complex Networked Systems: Convergence Analysis, Dynamic Behaviour, and Security.

Complex networked systems are a modern reference framework through which very dierent systems from far disciplines, such as biology, computer science, physics, social science, and engineering, can be described. They arise in the great majority of modern technological applications. Examples of real complex networked systems include embedded systems, biological networks, large-scale systems such as power generation grids, transportation networks, water distribution systems, and social network. In the recent years, scientists and engineers have developed a variety of techniques, approaches, and models to better understand and predict the behaviour of these systems, even though several research…

Complex Network Data clustering Hegselmann-Krause model Consensus Security Attacks Line Network k-means Opinion Dynamics.Settore ING-INF/04 - Automatica
researchProduct

Automatic Unsupervised Segmentation of Retinal Vessels Using Self-Organizing Maps and K-Means Clustering

2011

In this paper an automatic unsupervised method for the segmentation of retinal vessels is proposed. A Self-Organizing Map is trained on a portion of the same image that is tested and K-means clustering algorithm is used to divide the map units in 2 classes. The entire image is again input for the Self-Organizing Map, and the class of each pixel will be the class of the best matching unit on the Self-Organizing Map. Finally, the vessel network is post-processed using a hill climbing strategy on the connected components of the segmented image. The experimental evaluation on the publicly available DRIVE database shows accurate extraction of vessels network and a good agreement between our segm…

Self-organizing mapGround truthSettore INF/01 - InformaticaPixelbusiness.industryComputer scienceComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONk-means clusteringScale-space segmentationPattern recognitionRetinal vessels Self-Organizing Map K-MeansSegmentationComputer visionArtificial intelligenceCluster analysisbusinessHill climbing
researchProduct

Forms and Functions of the Real Estate Market of Palermo (Italy). Science and Knowledge in the Cluster Analysis Approach

2016

The analysis of the housing market of a city requires suitable approaches and tools, such as data mining models, to represent its complexity which derives on many elements, e.g. the type of capital asset-house is a common good and an investment good as well, the heterogeneity of the urban areas—each of them has own historical and representative values and different urban functions—and the variability of building quality. The housing market of the most densely populated area of Palermo (Italy), corresponding to ten districts, is analyzed to verify the degree of its inner homogeneity and the relations between the quality of the characteristics and the price of the properties. Five hundred set…

Engineeringmedia_common.quotation_subjectReal estate02 engineering and technologyDisease clusterHusing marketCluster analysisHusing market Data mining Cluster analysis k-means method0502 economics and business0202 electrical engineering electronic engineering information engineeringRegional scienceQuality (business)Operations managementCluster analysiK-means methodData miningmedia_commonStructure (mathematical logic)business.industry05 social sciencesUrban policyHousing marketSettore MAT/04 - Matematiche ComplementariInvestment (macroeconomics)Common goodCapital (economics)Settore ICAR/22 - Estimo020201 artificial intelligence & image processingbusiness050203 business & management
researchProduct

A Clustering approach for profiling LoRaWAN IoT devices

2019

Internet of Things (IoT) devices are starting to play a predominant role in our everyday life. Application systems like Amazon Echo and Google Home allow IoT devices to answer human requests, or trigger some alarms and perform suitable actions. In this scenario, any data information, related device and human interaction are stored in databases and can be used for future analysis and improve the system functionality. Also, IoT information related to the network level (wireless or wired) may be stored in databases and can be processed to improve the technology operation and to detect network anomalies. Acquired data can be also used for profiling operation, in order to group devices according…

050101 languages & linguisticsIoTComputer scienceIoT; LoRa; LoRaWAN; machine learning; k-means; anomaly detection; cluster analysisk-means02 engineering and technologyLoRaSilhouette0202 electrical engineering electronic engineering information engineeringProfiling (information science)Wireless0501 psychology and cognitive sciencesCluster analysisbusiness.industryNetwork packetSettore ING-INF/03 - Telecomunicazioni05 social sciencesk-means clusteringanomaly detectionLoRaWANmachine learning020201 artificial intelligence & image processingAnomaly detectionInternet of ThingsbusinessComputer networkcluster analysis
researchProduct

Balance Perturbations as a Measurement Tool for Trunk Impairment in Cross-Country Sit Skiing

2018

In cross-country sit-skiing, the trunk plays a crucial role in propulsion generation and balance maintenance. Trunk stability is evaluated by automatic responses to unpredictable perturbations; however, electromyography is challenging. The aim of this study was to identify a measure to group sit-skiers according to their ability to control the trunk. Seated in their competitive sit-ski, 10 male and 5 female Paralympic sit-skiers received 6 forward and 6 backward unpredictable perturbations in random order. k-means clustered trunk position at rest, delay to invert the trunk motion, and trunk range of motion significantly into 2 groups. In conclusion, unpredictable perturbations might quantif…

030506 rehabilitationmedicine.medical_specialtyComputer sciencek-meanstasapainoPhysical Therapy Sports Therapy and RehabilitationElectromyographyRandom order03 medical and health sciences0302 clinical medicinePhysical medicine and rehabilitationcore stabilitymedicineParalympicsBalance (ability)selkäydinvammatparalympialaisetCross countryParalympics spinal cord injurymedicine.diagnostic_testCore stability030229 sport scienceshiihtoautomatic responses core stability k-means Paralympics spinal cord injuryTrunkspinal cord injuryautomatic responses0305 other medical scienceRange of motionhuman activities
researchProduct

Beyond Tandem Analysis: Joint Dimension Reduction and Clustering in R

2019

We present the R package clustrd which implements a class of methods that combine dimension reduction and clustering of continuous or categorical data. In particular, for continuous data, the package contains implementations of factorial K-means and reduced K-means; both methods combine principal component analysis with K-means clustering. For categorical data, the package provides MCA K-means, i-FCB and cluster correspondence analysis, which combine multiple correspondence analysis with K-means. Two examples on real data sets are provided to illustrate the usage of the main functions.

dimension reduction; clustering; principal component analysis; multiple correspondence analysis; K-meansStatistics and Probabilitydimension reduction clustering principal component analysis multiple correspon-dence analysis K-meansFactorialmultiple correspon-dence analysisMultiple correspondence analysiComputer sciencedimension reductionprincipal component analysisk-meansmultiple correspondence analysisPrincipal component analysicomputer.software_genre01 natural sciencesCorrespondence analysis010104 statistics & probabilityMultiple correspondence analysis0101 mathematicsCluster analysisCategorical variablelcsh:Statisticslcsh:HA1-4737Dimensionality reductionk-means clusteringK-meanPrincipal component analysisData miningHA29-32Statistics Probability and UncertaintycomputerSoftwareclusteringJournal of Statistical Software
researchProduct